Проверка зажигания осциллографом. как производится диагностика зажигания при помощи осцилографа

Диагностика неисправностей, возникающих в системе зажигания двигателя

Двигатель внутреннего сгорания современного автотранспортного средства – достаточное сложное устройство, и в его работе могут периодически возникать различные сбои.

Диагностика системы зажигания автомобиля позволяет выявить неисправности, определить, какие детали нуждаются в ремонте, замене или профилактике.

Основные проблемы в системе зажигания

Начиная с середины прошлого столетия, система зажигания (СЗ) постоянно совершенствовалась, и если в семидесятых годах 20-го века в основном была распространена схема с контактными трамблерами, то в 80-х годах уже использовалась бесконтактная система с коммутатором для лучшего искрообразования на свечах. На рубеже тысячелетий в основном стали применяться СЗ с полным электронным управлением, и они используются в автомобилях с бензиновыми двигателями и по сегодняшний день.

Если в системе зажигания происходят различные сбои, в двигателе возникают различные проблемы:

  • мотор начинает троить – не работает один или несколько цилиндров;
  • ДВС не запускается (пропадает искра на свечах зажигания);
  • появляются хлопки во впускном коллекторе или в трубе глушителя;
  • движок начинает детонировать, «стучат поршневые пальцы»;
  • повышается расход топлива, а из трубы глушителя идет черный дым;
  • двигатель перегревается.

Причиной неисправности могут быть любые детали и узлы СЗ:

  • искровые свечи;
  • катушка или модуль зажигания;
  • высоковольтные провода или наконечники;
  • прерыватель-распределитель (в системах с трамблером);
  • коммутатор (если он устанавливается в системе);
  • замок зажигания;
  • электропроводка;
  • различные датчики или сам блок управления (в электронных системах).

Приборы для диагностики

Чтобы определить неисправность в системе зажигания, применяется различного рода диагностика, причем, проверить исправность деталей СЗ можно различными приборами, также можно продиагностировать двигатель и вручную, например, по свечам.

Компьютерная диагностика используется для проверки работоспособности электронных систем управления двигателем (ЭСУД) – с помощью подключения к диагностическому разъему ДВС сканера или компьютерного устройства (ноутбука, стационарного компьютера) выявляются ошибки датчиков, топливных форсунок, проверяются общие параметры.

К приборам диагностики также относятся вольтметры, омметры, в некоторых автосервисах неисправности в СЗ определяют с помощью осциллографа – этот прибор позволяет с высокой точностью определять параметры многих элементов электронной системы.

Диагностика по свечам зажигания

Диагностику по свечам проводят в том случае, если требуется выяснить, какой из цилиндров в двигателе не работает. На ЭСУД отключение производится с помощью диагностического прибора, например, на сканере – диагностический стенд отключает подачу питания на цилиндр. При исправной свече характер работы двигателя меняется – он замедляет обороты, начинает работать еще более неустойчиво.

На простом карбюраторном движке исправность свечей проверяют выдергиванием свечных наконечников, и здесь принцип определения работоспособности цилиндра такой же, как и при компьютерной диагностике – если характер работы двигателя не меняется, следует искать неисправность именно в этом цилиндре.

Причин нестабильной работы ДВС может быть много, и далеко не всегда в подтраивании движка виноваты могут быть свечи. Чтобы проверить свечи зажигания, их выкручивают из головки блока цилиндров и в первую очередь осматривают. На исправной свече:

  • зазор между электродами равен 0,7-1,0 мм, сами электроды не подгорелые, достаточной толщины;
  • нет черного нагара, сколов изолятора вокруг центрального электрода;
  • на наружном изоляторе нет трещин, следов прогара.

Работоспособность свечи проверяют на специальном стенде под давлением – заворачивают ее в камеру, создают рабочее давление (9-12 атмосфер) и подают высокое напряжение – если между электродами проскакивает хорошая рабочая искра, значит, свеча зажигания в порядке.

Диагностика катушек зажигания

Катушки зажигания (КЗ) на автомобилях из строя выходят достаточно часто, из-за неисправности этих деталей мотор может совсем не запускаться или троить и не набирать обороты. Сразу следует отметить, что КЗ могут быть разными по конструкции – на более старых моделях шла одна круглая катушка цилиндрического типа, на современных ДВС устанавливаются:

  • сдвоенные (по две КЗ) или монолитные модули с высоковольтными проводами и наконечниками;
  • катушки для каждого цилиндра – такие модули зажигания устанавливаются непосредственно на свечи, и у них нет в/в проводов и наконечников.

Проверяются КЗ различными способами:

  • внешним осмотром;
  • омметром;
  • осциллографом.

Часто катушки выходят из строя из-за перегрева, и на более старых моторах (например, ВАЗ «Классика») в результате обрыва или замыкания витков обмотки двигатель перестает запускаться, так как КЗ устанавливается на этих движках одна. На более новых авто при неисправной обмотке перестают работать только один или два цилиндра, и движок начинает троить.

Осматривать катушку следует очень внимательно – на токоизоляционных ее частях не должно быть следов прогара, а также присутствовать трещины. Если наружные дефекты обнаруживаются, деталь подлежит обязательной замене – в любом случае она уже долго не прослужит.

Проверить целостность обмоток КЗ можно с помощью омметра:

  • на первичной обмотке прибор должен показывать в пределах одного Ома;
  • на вторичной обмотке сопротивление колеблется в пределах от 5 до 20 КилоОм.

Показатели для различных моделей КЗ могут отличаться, для каждой марки существуют свои параметры. Но по сопротивлению исправность детали определить не всегда удается, более точно это можно выяснить при помощи осциллографа или путем ее замены на заведомо исправную запасную часть.

Диагностика трамблера

На многих системах зажигания более старых автомобилей устанавливался трамблер, и он часто являлся причиной сбоев в работе двигателя.

В контактных прерывателях-распределителях нередко подгорают элементы контактной группы, и по этой причине мотор может трудно запускаться или не заводиться вовсе.

В бесконтактных трамблерах может выйти из строя датчик Холла, но это не является характерной «болезнью» распределителей – ломаются датчики не так часто.

Наиболее распространенные неисправности трамблеров:

  • перегорание резистора на бегунке;
  • появление трещин и прогар в крышке трамблера;
  • обрыв проводков датчика Холла (часто такое отмечается в распределителях ВАЗ 2108-09, ГАЗ 31029-3110 с двигателем ЗМЗ 402);
  • износ подшипников вала.

Крышку трамблера на русских автомобилях стоит очень недорого, меняется в течение нескольких минут, и поэтому лучше такую деталь всегда иметь с собой в запасе. Проверить крышку проще всего ее заменой – если мотор стал работать исправно, все дело именно в ней.

Диагностика ЭСУД

Исправность электронной системы управления двигателем проверяется при помощи специального сканера или компьютера, в приборах диагностики зажигания устанавливаются программы, причем, для каждой модели двигателя используется свое программное обеспечение.

В электронной системе присутствуют различные датчики, и они могут выходить из строя.

Если в ЭСУД появляются неисправности, они фиксируются электроникой, а о наличии ошибки сигнализирует лампа диагностики Check Engine на щитке приборов в салоне машины.

Каждой ошибке присваивается свой код, например, для автомобилей ВАЗ пропуск зажигания четвертого цилиндра обозначается кодом Р0304. Неисправным в системе может быть любой из датчиков:

  • положения дроссельной заслонки (ДПДЗ);
  • детонации (ДД);
  • положения распредвала (ДПРВ);
  • положения коленвала (ДПКВ);
  • расхода воздуха (ДМРВ) или абсолютного давления (ДАД), разные датчики устанавливаются в зависимости от типа ЭСУД;
  • температуры (ДТОЖ);
  • окружающего воздуха (ДТОВ).

Еще во всех электронных системах устанавливается регулятор холостого хода, сам блок управления. Нередко причиной сбоев в зажигании является электропроводка, например, не подается питание на одну из катушек. Если отказывается работать ЭБУ, двигатель может не запускаться, в таком случае блок подлежит ремонту или замене.

Неисправности высоковольтных проводов

В/в провода со временем теряют свои изоляционные свойства, также внутри проводов может произойти обрыв токопроводящего элемента.

Но чаще всего провода начинают пробивать на массу – изоляция не выдерживает высокого напряжения.

Диагностировать высоковольтные провода хорошо в темноте – когда темно, хорошо видно, где пробивается наружу искра. Если идет пробой искры, мотор троит и не развивает нужных оборотов.

Неисправности коммутатора зажигания

В бесконтактных системах зажигания с трамблером устанавливается коммутатор, он предназначен обеспечивать бесперебойное искрообразование на свечах, также служит для образования стабильной искры на всех оборотах двигателя, в том числе и холостых. В случае отказа коммутируемого устройства мотор начинает плохо запускаться, а во многих случаях совсем не заводится.

Основной признак неисправного коммутатора – его сильный нагрев, определить перегрев можно, прикоснувшись рукой к корпусу устройства. Как правило, вместе с коммутатором также сильно нагревается и катушка.

Часто эти детали нагреваются и выходят из строя на старых автомобилях «Газель» и «Волга» ГАЗ 31029-3110 с двигателем ЗМЗ 402.

Причина столь частых поломок – низкое качество запчастей, поставляемых различными производителями.

Источник: https://avtobrands.ru/diagnostika-neispravnostej-voznikayushhih-v-sisteme-zazhiganiya-dvigatelya/

Диагностика системы зажигания

Мотор-тестер позволяет детально продиагностировать состояние высоковольтной части системы зажигания по анализу осциллограммы вторичного напряжения. Цифровой осциллограф, который является основой современного мотор-тестера, способен отображать диаграмму высокого напряжения системы зажигания в реальном времени.

Кроме того, встроенное программное обеспечение рассчитывает параметры импульсов зажигания, такие как пробивное напряжение, время и напряжение горения искры. Научившись читать осциллограммы, можно понять какие процессы происходят в системе зажигания двигателя и быстро вычислить неисправность.

В этой статье рассмотрим подробно анализ каждого участка осциллограммы вторичного напряжения, процессы зарождения и горения искры, а также типичные неисправности системы зажигания. Статья содержит большое количество изображений, за что я выражаю благодарность специалистам фирмы Quantex Laboratory.

Типичная осциллограмма вторичного напряжения исправной системы зажигания.

В этой точке начинает заряжатся катушка энергией.

Промежуток времени, которое заряжается катушка

Момент отсечки или «насыщения» катушки

Типичный пример ВАЗовских контроллеров, когда момента «насыщения» не видно.

А вот этот случай уже дефект.

Высокий пик на осциллограмме — это момент пробоя воздушного промежутка искрой.

Чем плотнее заряд топливно-воздушной смеси, тем больше требуется напряжения для пробития искрового промежутка. Напряжение пробоя повышается, если:

  • Высокая компрессия
  • Обедняется смесь
  • Появляется дополнительное сопротивление, например обрыв ВВ проводов
  • С увеличением зазора в свече
  • С уменьшением угла опережения зажигания
Читайте также:  Датчик температуры охлаждающей жидкости (дтож) в приоре и калине: снятие, установка, принцип действия и проверка

Напряжение пробоя понижается, если:

  • Низкая компрессия
  • Обогащается смесь
  • Появляются замыкания во вторичной цепи
  • С уменьшением зазора в свече
  • С увеличением угла опережения зажигания

Такая осциллограмма возникает из-за дефекта высоковольтных проводов.

«Точка искры»

Незначительный дефект вторичной цепи

Зачастую спорадические проявления неисправности можно выявить только при резкой перегазовке, когда напряжение пробоя достигает максимальных значений. На осциллограмме ниже дефект, который может проявляться, когда «шьет» свеча или высоковольтный провод.

Характерная «полочка» на осциллограмме — линия искры. Типичное время горения искры 0,8 — 1,5 мс.

Закон сохранения энергии в действии.

На холостом ходу линия искры практически ровная.

При резком открытии дроссельной заслонки увеличивается поток воздуха в цилиндре и повышается турбулентность, которую хорошо видно по шумам на линии искры.

Типичный дефект, когда искра стекает по угольной дорожке колпачка.

Чрезвычайно важный участок осциллограммы для диагностики катушки зажигания.

Типичный дефект катушки зажигания- межвитковое замыкание.

ВАЗовские катушки в связи с низкой индуктивностью имеют малое количество колебаний, что не является дефектом.

Теперь что касается диагностики систем зажигания с индивидуальными катушками. Для проверки можно подключится щупом к первичной цепи зажигания или же использовать индуктивный датчик. Я использую в своей работе последний вариант, при чем в качестве датчика у меня используется датчик положения коленчатого вала ВАЗ. Осциллограммы снятые с помощью индуктивного датчика немного отличаются от тех, которые снимаются емкостным датчиком. Типичные примеры приведены ниже:Это нормальный разряд.Такой пробой в катушке обычно возникает при резком открытии дроссельной заслонки:Это осциллограмма полностью не рабочей катушки:Это катушка имеет межвитковое замыкание. Может работать, но обычно под нагрузкой пробивает:Еще один вариант высоковольтного пробоя. Кстати его очень легко спутать с пробоем свечи зажигания.

скачать dle 10.6фильмы бесплатно

Источник: http://www.motorhelp.ru/76-diagnostika-sistemy-zazhiganiya.html

Осциллограф Autoscope для начинающих диагностов

Начинающие диагносты искренне верят, что после приобретения осциллографа они, теперь то уж точно, смогут обнаружить любую неисправность. Но, частенько, после приобретения прибора появляется много вопросов. Причем, если даже удалось корректно записать осциллограмму, то не всегда получается разобраться с полученными графиками, с помощью осциллограф Autoscope.

Осциллограф, в нашем случае Autoscope Постоловского – это, фактически, графический вольтметр. Его отличие от вольтметра в том, что он показывает не только величину напряжения, но и как оно изменяется во времени, т.е. его форму.

Соответственно, ось «Y» – это величина напряжения, а ось «Х» – это время. Если величина напряжения не меняется, мы увидим на мониторе горизонтальную линию. Если напряжение увеличивается, то эта линия пойдет вверх, а если уменьшается – то вниз.

Показания Autoscope — изменение формы напряжения

Особенно ценным осциллограф будет при анализе быстро протекающих процессов (например, сигналов датчиков) или сигналов имеющих, к тому же, еще и сложную форму (например, управления форсункой или катушкой зажигания).

Показания Autoscope — быстро меняющаяся осциллограмма вторичного напряжения катушки зажигания

Для того, чтобы уметь проанализировать осциллограмму нужно, прежде всего, знать и понимать протекающие процессы и приобрести определенный опыт.

Потренируемся с показаниями осциллографа Autoscope следующим образом

Возьмем любой источник питания, (например, автомобильную аккумуляторную батарею или пальчиковую батарейку) и будем подключать ее к осциллографу. Когда на сигнальном выводе осциллографического щупа напряжения нет, мы видим на мониторе горизонтальную линию.

А когда напряжение есть, мы тоже увидим горизонтальную линию, только она «подпрыгнет» вверх. Если подключать питание к осциллографическому щупу и тут же отключать его, то на мониторе появятся импульсы прямоугольной формы.

Изменяя чувствительность входа осциллографа можно изменять высоту этих импульсов, а изменяя развертку – изменять их ширину.

При помощи индикатора значения можно, с большой точностью, измерить величину напряжения в точке, куда установлен измерительный маркер, а также измерить продолжительность любого участка осциллограммы, расположив его между измерительными маркерами.

Показания осциллографа — измерение продолжительности участка осциллограммы с помощью измерительных маркеров

Усложняем задание. Для его проведения понадобиться помощник (или, лучше помощница).

Берем два источника питания и будем подключать-отключать их к двум разным каналам осциллографа. Тогда мы увидим на мониторе пример двухканальной осциллограммы.

Причем, если помощница будет совершать свои подключения не спеша, а вы, наоборот, будете «частить», то прямоугольные импульсы разных каналов будут отображаться на мониторе в разное время.

Показания Autoscope — работают два источника питания с разной частотой

Можно привести много примеров подобных сигналов в системе управления автомобильного двигателя. Например, особенно ценной будет такая запись при проверке правильности установки цепи, или ремня газораспределения.

Можно, также, поэкспериментировать с сигналами различных автомобильных датчиков и устройств, приобретая, тем самым, нужный и необходимый опыт.

Датчик положения коленвала и его показания

Этот датчик, в большинстве случаев, индукционный. Т.е. он не является источником напряжения, но способен реагировать на металлические предметы. Так, если подключить к такому датчику осциллограф и подносит к нему, например, обычную отвертку, то мы получим такую осциллограмму.

Показания осциллографа Autoscope — датчик коленвала

Датчик Холла и его осциллограмма

Этот датчик работает как обыкновенный выключатель. Для работы ему необходимо питающее напряжение.

Поэтому если этот датчик «на весу» подключить, например, к разъему трамблера карбюраторной Славуты, или ВАЗ 2109, то после включения зажигания можно поэкспериментировать с датчиком.

Если в паз датчика вставлять и вынимать, например, ножовочное полотно, то осциллограф, подключенный к сигнальному проводу датчика, покажет такую осциллограмму.

Показания прибора Autoscope — работа датчика Холла

Некоторые думают, что датчик Холла сам «выдает» напряжение. Но, это не так. Никакого напряжения датчик Холла не выдает. Он просто подключает сигнальный выход к «массе» и отключает его от «массы», и тем самым изменяет величину опорного напряжения, которое приходит к нему от коммутатора или электронного блока управления двигателем.

Электромагнитное реле

Если подключить осциллограф к обмотке реле и подавать на его обмотку импульсное напряжение, (т.е. по простому говоря, подключать и отключать питание), то на осциллограмме мы увидим «выброс» напряжения самоиндукции в отрицательной полярности.

Показания осциллографа Autoscope — электромагнитное реле

Если мысленно попробовать перевернуть эту осциллограмму «вверх ногами», то она станет очень-очень похожей на осциллограмму управления электромагнитной форсункой (впрочем, как и на осциллограмму любого другого элемента, обладающего значительной индуктивностью – электромагнитного клапана и т.п.).

Еще больше информации можно получить при многоканальной записи. Например, если подключиться к форсунке, искре, МАР и измерить разрежение во впускном коллекторе.

Показания Автоскопа — осциллограммы нескольких датчиков одновременно

Продолжение статьи читайте во второй части, посвященной электромагнитной форсунке впрыска.

Выражаем благодарность Андрею Бежанову (andreika)
Александр Передерий

Источник: https://autodiagnos.com.ua/ostsillograf-autoscope-dlya-nachinayushhih/

Диагностика ЦПГ двигателя с помощью осциллографа

В этой статье рассматриваются методы компьютерной диагностики состояния механики двигателя.

Суть методов основана на том, что с помощью специальных датчиков при использовании многоканального цифрового осциллографа на базе ПК мы имеем возможность анализировать изменение состояния разных величин: разрежение во впускном коллекторе; давление в цилиндрах; пульсации давления отработавших газов в выхлопной трубе; пульсации давления картерных газов; пульсации давления масла в масляной магистрали; пульсации тока стартера. При этом мы можем засинхронизировать сигнал от индуктивного датчика, установленного на высоковольтный провод свечи первого цилиндра бензинового двигателя или от пьезодатчика, установленного на топливопроводе форсунки первого цилиндра дизельного двигателя. Таким образом, можно сделать вывод о принадлежности определенной аномалии конкретному цилиндру.

Предлагаемые методики полностью универсальны и применимы для диагностики как бензиновых, так и дизельных двигателей.

Проверка пульсаций разрежения во впускном коллекторе

Этот тест проводится в режиме прокрутки стартером. Для блокировки пуска двигателя нужно отключить систему зажигания и/или систему подачи топлива. Если двигатель исправен, сигнал носит синусоидальный характер.

Сигнал приобретает пилообразную форму в случае, если ремень (цепь) установлен неправильно.

Сигнал имеет шумы в верхней части синусоиды

Такая осциллограмма разрежения во впускном коллекторе указывает на то, что впускные клапана закоксованы настолько, что нагар на тарелке клапанов препятствует эффективному наполнению цилиндров топливовоздушной смесью.

   Такая осциллограмма указывает на нарушения в работе клапанного механизма, связанные с неправильной регулировкой тепловых зазоров в клапанном механизме, или на неисправность гидрокомпенсаторов.    Этот тест также позволяет выделить неисправности только механической части двигателя, а время проведения, 5-6 сек, не имеет себе равных.

Проверка пульсаций отработавших газов в выхлопной трубе

Наверное, многие замечали, как опытный моторист анализирует работу двигателя, поднося руку к выхлопной трубе.

Неравномерность пульсаций выхлопных газов ощущается даже рукой и указывает на наличие проблем в системе подачи топлива, зажигании, а также на проблемы механики двигателя.

Характер пульсаций давления выхлопных газов несет в себе богатую информацию о работе двигателя. Для анализа неравномерности выхлопа используется датчик давления, который подсоединяется к выхлопной трубе.

Теперь двигатель нужно запустить и оставить работать на холостом ходу.

Осциллограмма пульсаций отработавших газов исправного двигателя.

Если в одном из цилиндров наблюдается уменьшение уровня пульсаций, и это отклонение носит систематичный характер, значит, один из цилиндров работает со сниженной эффективностью.<\p>

Проверка пульсаций картерных газов

   Почти каждый автомобилист наблюдал, как «знатоки» открывали крышку маслозаливной горловины на работающем двигателе и пытались давать советы о состоянии поршневой группы.

   Газы, прорывающиеся в картер через изношенную цилиндропоршневую группу, вызывают там пульсации давления. Измерив уровень пульсаций давления картерных газов с помощью соответствующего датчика, можно судить о состоянии цилиндропоршневой группы.

Читайте также:  Техническое обслуживание (то) polo sedan. полный регламент то 1, то 2, то 3

   Осциллограмма пульсаций давления картерных газов исправного двигателя на холостом ходу.

Импульс давления одного из цилиндров на осциллограмме давления картерных газов резко выделяется на фоне остальных.

Такая осциллограмма указывает на то, что в одном из цилиндров может быть повреждение зеркала цилиндра, поломка или залегание поршневых колец, поломка перегородок или прогар поршня.

Осциллограмма давления в цилиндре

В отличие от теста замера разрежения во впускном коллекторе, этот тест дает более ценную информацию на работающем двигателе. Для проведения теста датчик давления должен быть вкручен вместо свечи зажигания.

Свечной провод должен быть подключен к разряднику. Двигатель будет работать с отключенным зажиганием в одном цилиндре на протяжении трех-пяти минут. Какую же информацию несет сигнал этого датчика?

Пик давления в цилиндре однозначно указывает на ВМТ поршня.    Второй канал отображает сигнал индуктивного датчика, указывающий на момент зажигания. Зная обороты двигателя и разницу времени между импульсом зажигания и ВМТ, можно вычислить реальный угол опережения зажигания.    Анализируя осциллограмму давления в цилиндре, можно измерить моменты открытия и закрытия клапанов.

Начало увеличения давления перед ВМТ такта сжатия указывает на момент закрытия впускного клапана.    Момент, отмеченный на осциллограмме, соответствует началу открытия выпускного клапана.

   Следующая точка, которая нам интересна, – момент начала открытия впускного клапана, когда выпускной еще не закрылся.    Начало открытия впускного клапана.    Данный тест позволяет сделать вывод о работе газораспределительного механизма для каждого цилиндра отдельно.

Имея технические данные исследуемого двигателя (углы открытия и закрытия клапанов) можно сделать вывод о степени износа кулачков распредвала.    В заключение хочется сказать следующее: никакой самый современный диагностический прибор не в состоянии самостоятельно поставить достоверный диагноз.

Диагностические приборы являются лишь инструментом в руках опытного диагноста. И правильность поставленного диагноза зависит от уровня квалификации специалиста.

Источник: http://auto-master.su/content/diagnostika-tspg-dvigatelya-s-pomoshchyu-ostsillografa

Как работать с осциллографом

Все осциллографы снабжены экраном для отображения осциллограмм. Экран может быть выполнен как электронно-лучевая трубка, как жидкокристаллический монитор либо может использоваться монитор компьютера. Ниже показан пример типичного экрана осциллографа. 

Классический экран осциллографа.

На монитор нанесены деления. Деления позволяют визуально оценить параметры сигнала. Деления, нанесённые по горизонтальной оси, позволяют измерять временные параметры. Деления, нанесённые по вертикальной оси, позволяют измерять напряжение. 

Графики, отображаемые на мониторе, называют осциллограммами. Самый простой осциллограф отображает только осциллограммы напряжений. Эта форма отображения показывает зависимость напряжения от времени.

Существуют приборы, отображающие зависимость амплитуды от частоты – спектроанализаторы. Такие приборы используются при измерениях уровней шума/вибрации, а так же при анализе спектрального состава сигнала.

Графики, отображаемые такими приборами, называются спектрограммами.

Путём просмотра осциллограмм напряжений и спектрограмм можно выявить неисправности в электрических цепях в рабочем режиме без их разборки. По осциллограммам напряжений можно выявить неисправности датчиков, исполнительных механизмов и электропроводки в электронных системах автомобилей. 

Нулевая линия. 

Если к входу осциллографа не подключать никакого источника напряжения, то осциллограмма будет выглядеть как ровная горизонтальная линия. Такую линию называют «нулевая линия», так как она отображает уровень, соответствующий напряжению равному 0 Вольт на входе осциллографа.

Осциллограмма напряжения на входе осциллографа без подключения к какому-либо источнику напряжения. A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению нулевой линии, что составляет 0 Вольт. 

Если вход осциллографа подключить к источнику постоянного напряжения, например к автомобильной аккумуляторной батарее, то полученная осциллограмма так же будет иметь форму ровной горизонтальной линии, но её положение по вертикали на экране будет отличаться от положения нулевой линии.

Осциллограмма напряжения автомобильной аккумуляторной батареи. A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению автомобильной аккумуляторной батареи и равно ~12,3 Вольт. 

Разность между положениями полученной осциллограммы и нулевой линии прямо пропорционально значению напряжения.

Большинство осциллограмм напряжений сигналов имеют форму отличную от ровной горизонтальной линии. Положение нулевой линии на экране осциллографа можно изменять по вертикали – поднять выше или опустить ниже. Необходимость изменения положения нулевой линии (выше или ниже) зависит от формы исследуемого сигнала, а так же возникает в случае использования многоканального осциллографа.

Пример вывода на экран многоканального осциллографа нескольких сигналов одновременно с индивидуальной настройкой положения нулевой линии для каждого канала. 

Усиление. 

График на экране осциллографа отображает зависимость значения напряжения от времени. Чем большая амплитуда исследуемого сигнала, тем большее на экране осциллографа вертикальное отклонение сигнала. В зависимости от амплитуды, для наглядности отображения сигнала выбирают подходящее усиление. Значение усиления измеряется в Вольтах на деление.

Возможность изменения значения усиления позволяет на экране осциллографа отображать как сигналы с очень малой амплитудой напряжения, так и сигналы с очень большой амплитудой напряжения. Необходимое значение усиления зависит от амплитудных параметров исследуемого сигнала.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения усиления. Большее значение Вольт/деление выбирают тогда, когда на экране нужно отобразить весь сигнал по амплитуде.

Осциллограмма напряжения сигнала управления форсункой при значении усиления 5 Вольт/деление.

Меньшее значение Вольт/деление выбирают тогда, когда нужно детально исследовать форму и амплитудные параметры отдельных участков сигнала. В таком случае на экране отображается только часть сигнала по амплитуде.

Осциллограмма напряжения сигнала управления форсункой при значении усиления 1 Вольт/деление.

Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения усиления.

Развёртка.

Осциллограф прорисовывает график напряжения слева направо, начиная с левой стороны экрана. Скорость, прорисовки графика называется развёрткой. Развёртка измеряется в Секундах на деление. Значение развёртки можно изменять с помощью переключателя время/деление.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения развёртки. Меньшее время/деление выбирают тогда, когда нужно детально исследовать форму и временные параметры отдельных участков сигнала. В таком случае на экране отображается более короткий по времени фрагмент сигнала.

Осциллограмма напряжения сигнала управления форсункой при меньшем значении развёртки. В данном случае выбрана развёртка 0,2 милли Секунды/деление. 

В случае если на экране необходимо отобразить больший по времени фрагмент осциллограммы, например для выявления отдельных импульсов с неправильной формой сигнала либо пропуски импульсов, выбирают большее время/деление.

Осциллограмма напряжения сигнала управления форсункой при большем значении развёртки. В данном случае выбрана развёртка 1 милли Секунда/деление.

Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения развёртки. 

Синхронизация.

Для удобного и наглядного отображения периодичных (циклично повторяющихся) сигналов применяется синхронизация. Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного или относительно стабильного изображения.

В случае выключенной синхронизации, осциллограф прорисовывает график напряжения слева направо, начиная с крайней левой стороны экрана до тех пор, пока экран не заполнится на всю ширину, после чего прорисовка снова начинается с крайней левой стороны экрана, что неудобно для отображения относительно быстрых периодичных сигналов.

Для настройки синхронизации необходимо выбрать уровень синхронизации (значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму) и фронт сигнала (спадающее или возрастающее напряжение).

Пример настройки синхронизации. В данном случае синхронизация выбрана по заднему фронту сигнала канала №1 по уровню +6 Вольт. 

В случае если применяется многоканальный осциллограф, необходимо так же указать, по сигналу какого канала осуществлять синхронизацию.

Аналоговый сигнал. 

Значение напряжения большинства аналоговых сигналов изменяется во времени. Если изменения циклически повторяются, то такой сигнал называют периодичным, например сигнал управления форсункой.

Если осциллограмма напряжения периодичного сигнала пересекает нулевую линию, то такой сигнал называют переменным. Если осциллограмма напряжения периодичного сигнала не пересекает нулевой линии, то такой сигнал называют постоянным.

В качестве примера сложного аналогового сигнала постоянного тока можно привести сигнал лямбда-зонда.

Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~840 милли Вольт; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и составляет ~740 милли Вольт. 

Синусоидальный сигнал. 

Самым простым примером переменного аналогового напряжения является синусоида. Такой сигнал характеризуется только двумя параметрами – амплитуда и частота. Нулевая линия синусоидального переменного напряжения располагается ровно посередине сигнала.

Необходимо отметить, что большинство сигналов переменного напряжения значительно отличаются от чистого синусоидального. В автомобильной электронике близкими к синусоидальному являются сигналы, сгенерированные магнитными датчиками положения зубчатых колёс. 

Осциллограмма выходного напряжения датчика положения/частоты вращения коленчатого вала установленного напротив зубчатого колеса с двумя недостающими зубьями. A: – значение напряжения в момент времени указанный маркером;A-B: – значение разности напряжений между двумя указанными маркерами моментами времени.

Подобные сигналы генерируют некоторые датчики скорости вращения коленчатого вала, распределительного вала, скорости вращения колёс… 

Цифровой сигнал. 

Цифровые сигналы от аналоговых отличаются наличием только двух уровней напряжения – «высокий»/»низкий», «включено»/»выключено», «1»/»0″. Такие уровни напряжений цифрового сигнала называются «логическими уровнями». В большинстве случаев, логические уровни цифрового сигнала имеют точные значения напряжения, например +5 Вольт и 0 Вольт.

Осциллограмма выходного напряжения активного цифрового датчика частоты вращения коленчатого вала.A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению высокого уровня цифрового сигнала и составляет +5 Вольт.

Цифровые сигналы генерируются ключами (выключателями). Роль ключей выполняют транзисторы, переключающиеся между состояниями «открыт»/»закрыт».

Читайте также:  Замена ремня грм на двигателе 5а-fe. как поменять ремень грм и масло в акпп

Иногда цифровые сигналы генерируются механическими ключами – механическими выключателями, переключателями, электромеханическими реле… Примерами цифровых сигналов автомобильной электронике могут служить датчик Холла, датчики крайних положений дроссельной заслонки, активные датчики положения/частоты вращения коленчатого/распределительного вала…

Но преимущественно, цифровые сигналы используются в вычислительной технике, в том числе и в цифровых блоках управления электронными системами автомобилей. 

Частота. 

Частота – это количество циклов периодичного сигнала, повторяющееся за определённый период времени. Если за такой период времени принять одну секунду, то количество циклов периодичного сигнала повторившееся за этот период времени называют Герц (Гц). В автомобильной электронике количество оборотов двигателя принято рассчитывать за период времени равный одной минуте (Об/мин). 

По осциллограмме напряжения периодичного сигнала можно легко измерить частоту следования импульсов. Для этого необходимо измерить длительность полного цикла сигнала – период. Далее полученное значение временного промежутка можно пересчитать в частоту, воспользовавшись соответствующей формулой.

Рассчитаем частоту следования импульсов сигнала датчика положения коленчатого вала. 

Осциллограмма выходного напряжения датчика положения коленчатого вала.

Датчик, осциллограмма напряжения выходного сигнала которого приведена выше, генерирует один импульс напряжения за один оборот коленчатого вала. Временной промежуток между двумя ближайшими такими импульсами называется периодом.

В данном случае, два следующих один за другим импульса удалены друг от друга на 7,4 деления на экране осциллографа по горизонтали. Для отображения данного сигнала на экране выбрана развёртка (временной промежуток между каждым делением на экране осциллографа по горизонтали) 10 милли Секунд/деление, то есть 0,01 Секунды.

Умножив количество делений соответствующее периоду на значение развёртки можно получить численное значение периода повторения сигнала в Секундах: 

0,01*7,4=0,074 Секунд. Зная значение длительности периода повторения сигнала, можно рассчитать, сколько таких периодов проследует за одну секунду, то есть частоту сигнала в Герцах. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 1 Секунда) на период повторения сигнала (для данного сигнала 0,074 Секунд): 1/0,074=13,5 Гц. Если в данном случае рассчитать, сколько таких периодов проследует за одну минуту, то полученное значение будет соответствовать частоте вращения коленчатого вала в оборотах за минуту. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 60 Секунд) на период повторения сигнала (для данного сигнала 0,074 Секунд): 60/0,074=810 Об/мин.

Подобный расчет можно осуществить, располагая любым осциллографом, но некоторые осциллографы способны рассчитывать и отображать частоту сигнала в Герцах или в Оборотах за минуту в автоматическом или полуавтоматическом режиме.

Пример расчёта и отображения осциллографом частоты вращения двигателя в Оборотах за минуту в автоматическом режиме на основании сигналов системы зажигания.RPM: – текущая частота вращения коленчатого вала двигателя в Оборотах за минуту.

Длительность импульса. 

Длительность импульса – это временной промежуток, в течение которого сигнал находится в активном состоянии. Активное состояние – это уровень напряжения, который включает исполнительный механизм (приводит механизм в действие).

В зависимости от схемы включения исполнительного механизма, активное состояние может иметь различные уровни напряжения, например 0 Вольт, +5 Вольт, +12 Вольт… Например, напряжение активного состояния сигнала управления электромагнитной форсункой в большинстве систем управления двигателем теоретически равно 0 Вольт, а практически может колебаться в диапазоне 0…+2,5 Вольт и более.

Осциллограмма напряжения сигнала управления форсункой. Impuls width: – длительность импульса.

Для приведённого выше сигнала, длительность импульса открытия форсунки составляет 4,4 деления на экране осциллографа по горизонтали, что при развёртке 1 милли Секунда/деление соответствует 4,4 милли Секунды.

Скважность.

Скважность – это процент времени от периода повторения, когда сигнал находится в активном состоянии. Скважность – один из параметров сигналов ШИМ (Широтно-Импульсная Модуляция). 

Осциллограмма напряжения сигнала управления клапаном холостого хода. Duty cycle: – скважность сигнала. Сигнал 67% времени находится в активном состоянии (в данном случае значение напряжения активного состояния сигнала составляет ~1 Вольт);Frequency: – частота следования импульсов. В данном случае составляет ~100 Герц.

Сигналы ШИМ применяются для управления некоторыми исполнительными механизмами. Например, в некоторых системах управления двигателем сигналом ШИМ приводится в действие электромагнитный клапан холостого хода. Кроме того, сигнал ШИМ генерируют некоторые датчики, преобразовывая величину измеряемого физического параметра в скважность. 

ЭДС самоиндукции. 

ЭДС (Электро-Движущая Сила) самоиндукции – это напряжение, возникающее вследствие изменения значения величины магнитного поля и/или его направления вокруг электрического проводника.

В случае высокой скорости изменения величины магнитного поля внутри соленоида (обмотка электромагнитного реле, электромагнитной форсунки, катушки зажигания, электромагнитного датчика частоты вращения) напряжение ЭДС самоиндукции может достигать десятков/тысяч Вольт.

Величина напряжения ЭДС самоиндукции зависит в основном от индуктивности обмотки и скорости изменения величины магнитного поля. Для электромагнитных исполнительных механизмов, величина магнитного поля наиболее быстро изменяется при его разрушении, то есть при быстром отключении напряжения питания соленоида.

В некоторых случаях, эффект ЭДС самоиндукции нежелателен, и применяются меры для его уменьшения/устранения. Но некоторые электрические цепи спроектированы так, чтобы получить максимальный всплеск ЭДС самоиндукции, например, система зажигания бензинового двигателя. 

Осциллограмма напряжения на вторичной обмотке катушки зажигания бензинового двигателя.A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению ЭДС самоиндукции вторичной обмотки катушки зажигания ограниченному напряжением пробоя свечи зажигания и соответствует 8,3 кило Вольт.

Некоторые системы зажигания при напряжении питания 12 Вольт способны развивать напряжение ЭДС самоиндукции до 40-50 тысяч Вольт. 

Источник: http://auto-box111.ucoz.ru/publ/4-1-0-25

Методы проверки электронных систем зажигания

Существует много разных систем зажигания. Примерную схему одной из них мы предлагаем ниже.

147. Проверка вакуумного и центробежного регуляторов зажигания в бесконтактной системе производится так же, как и в контактной.См. советы 132—142.Установка момента зажигания производится обычно только в том случае, если демонтировался датчик-распределитель зажигания или был заменен зубчатый ремень.

В целом бесконтактные системы зажигания работают очень надежно и редко нуждаются в ремонте.148. Способ проверки и установки момента зажигания в бесконтактных системах такой же, как и в контактной.

При этом следует помнить, что в электронной системе с магнитоиндукционным датчиком установить момент зажигания можно только при работающем двигателе.149. Стробоскоп нельзя подключать к катушке зажигания.Это может вывести его из строя.

Один его провод подключите к свече первого цилиндра, а два других — к выводам аккумулятора.150. Наиболее распространенные электронные системы зажигания — с магнитоиндукционным датчиком и галлотроновым датчиком (датчик Холла).

Обе системы необслуживаемые.

• Проверка магнитоиндукционного датчика

151. Наиболее удобный способ проверки магнитоиндукционного датчика — измерение сопротивления катушки омметром.Полученные результаты сравните с определенными для датчика показателями (отклонение от них не должно превышать 20 %). Однако положительный результат исследования еще не означает того, что производимое нарушение напряжения имеет соответствующую амплитуду.

Напряжение можно измерить вольтметром или осциллографом, вращая коленчатый вал стартером. Причины падения напряжения — ослабление магнитных свойств сердечника или увеличение расстояния между датчиком и маховиком.

• Проверка галлотронового датчика (датчика Холла)

152. Для проверки галлотронового датчика нельзя пользоваться омметром.Лучше всего проверять его осциллографом, наблюдая за выходным сигналом. При подключении осциллографа к выходному зажиму датчика на экране прибора должна появиться следующая диаграмма.

Верхняя граница напряжения должна оставаться неизменной вне зависимости от величины оборотов двигателя, тогда как частота изменяться прямо пропорционально оборотам.

153. Если двигатель не запускается, демонтируйте распределитель зажигания (не отсоединяя проводов).
Произведите измерения, вращая приводным валиком распределителя вручную. Это относится и к магнитоиндукционному датчику.

• Проверка системы зажигания осциллографом

154. Осциллограф удобен тем, что графически изображает все фазы зажигания.Способ подсоединения осциллографа к системе зажигания зависит от типа системы.

При проверке электронной системы зажигания осциллограф подсоединяйте к тому зажиму первичной обмотки катушки зажигания, который соединен с модулем зажигания (другой зажим первичной обмотки соединен с положительным выводом аккумуляторной батареи через замок зажигания).155.

В системах зажигания без распределителя (типа DIS) катушка зажигания или комбинация катушек зачастую представляют собой замкнутую подсистему.

Из нее выходят провода высокого напряжения и провода к управляющему механизму. Доступа к первичной обмотке катушки нет, поэтому нужна специальная пробойная насадка, с помощью которой подсоединяются к одному из проводов, идущих от катушки к управляющему механизму.

• Техника безопасности при работе с электронной системой зажигания

156. При работающем двигателе нельзя касаться элементов системы зажигания (коммутатора, катушки зажигания и высоковольтных проводов).При включенном зажигании нельзя отсоединять провода от выводов аккумуляторной батареи, провода системы зажигания и измерительных приборов.157.

Нельзя проверять работоспособность элементов системы на искру.Двигатель следует мыть только при выключенном зажигании.Нельзя касаться кабеля «массы» или отсоединять его при работающем двигателе.Нельзя присоединять к отрицательной клемме конденсатор гашения помех или какую-либо контрольную лампу.158.

При проверке компрессии, прежде чем запустить двигатель стартером, отключите зажигание.Для этого снимите кабель высокого напряжения с распределителя зажигания и вспомогательным проводом соедините его с «массой» (вспомогательный провод должен иметь такое же сечение, как и кабель зажигания).

Нельзя прокладывать в одном жгуте провода низкого и высокого напряжения.

Люди с электрокардиостимулятором не должны производить работ с электронным устройством зажигания.

Проверка коммутатора

159. Коммутатор проверяют с помощью осциллографа и генератора прямоугольных импульсов.

Осциллограф желательно использовать двухканальный (один канал — для импульсов генератора, а второй — для импульсов коммутатора).

Если форма импульсов коммутатора искажена, то могут возникнуть перебои с искрообразованием или оно может происходить с опозданием, и тогда двигатель будет перегреваться, не развивая нормальной мощности.

Источник: http://world2car.ru/index.php/diagnostika-avtomobilya/619-metody-proverki-elektronnykh-sistem-zazhiganiya

Ссылка на основную публикацию